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We consider the self-similar solution of the problem of the stationary viscoplastic bound- 
ary layer which arises during the flow of a plastic material past a rough solid wall in the 
case of a power-law velocity distribution along the outer boundary. 

1, The defining equation of a viscoplastic medium is [I] 

where pij is the stress tensor, p is the pressure, 6ij is a unit tensor, p is the coefficient 

of viscosity, k is the yield strength, and Yij , Yt2, the straining rate tensor and its second 

basic invariant, respectively. In the case of plane flow of an incompressible material 
V@) = v,,z t- v,, 2. 

We assume that the yield strelrgth is sufficiently large, so that 

B p $‘* fB = kL i I”U) If *2) 

Here B is the Bingham number, R is the Reynolds number, and L and G are the cha- 
racteristic linear dimension and velocity, respectively. 

Condition (1.2) enables us to neglect the inertial terms and to write the boundary- 

layer equations in the form [l. ‘21 

&pXl av 
q = avpx2 ’ 

ii) = sign x 

(5.3) 

41.4) 

The axis tl is directed along the solid wall; the axis x2 is perpendicular to the wall. 
We assume that the medium is ideally plastic outside the boundary layer. 

Another type of viscoplastic boundary layer is considered in [SJ. 
Let the velocity distribution in the exterior flow near the boundary layer be described 

by a power law, and let the pressure over some intervaf of gs values be approximately 
constant, 

We assume that the shearing stress at the upper boundary of the layer is equal to the 

yield strength of the material. Neglecting slippage at the lower boundary of the layer, 

we have the following boundary conditions : 

u (51, 0) = 0, * (Xi, 6) = 0 u !q I Lfn 

p (x1, 6) := p. = const, Pzr (x,, 6) = w k (1.5) 

where 6 = ~5 (rr) is the thickness of the boundary layer. 
bet us introduce the dimensionless variables 

Zl 
x1* zz? - 

52 

L ( 
x2* == -gj.j.- , v*=;.$ 

U’ 
p*=P--c~ 

Ek ’ 
E s B-‘&g 1 (1.6) 

Equations (I. 3) now become 
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af* -- axl*-$i+40 g&$)7 ( q 
* av*taz,= 
- avf/ax~* 

p* = - 2q* + f* + po’ (f.7) 

where f* is an arbitrary function of x1 *. By virtue of (1.1) and (I. 6). to within terms of 
the order of ka4 we have 

&=k o+i9 
L ! 

BP 
dz’- (1.8) 

2 
2oTJf2 

)I 

Conditions (I.. 5) with applowance for (1.8) become 

v* (Xl’, 0) = 0, u* (xr*, P) = Wzr*n, p* &!r*, s*) = po* (1.9) 

&P/f?x~* - 2l)2* = 0 for x2* = 8* 

2. We shall obtain the expressionfor the velocity in the layer in the form 

u = @%“cp (Q, f = XJd, 8 = _!Ixrm (2.1) 

(The asterisks used above to denote dimensionless quantities will be omitted from 

now on.) 

From (1.7) and (1.9) we obtain (2.2) 
cp” (cp’s + 4naD%p2) - 4/g (n - 1) Dsqf2 [(Z + n) &p,’ + 3n(p] = ‘/a (n - 2) w cD2qP 

P = pQ + @ (E) p)‘3, a (E) = c - 2oD (n lp / rp’ - m!j,) (2.31 
m=Ys@C n)*n#l (2.41 

cp(O)=O, g,(f)=f, @ (1) = 0 p” - 2D3 (n - mf3)2 = 0, p = ‘P’ (1) (2.5) 

By virtue of (2.3) and (2.5). the constant C is given by 

G’=2w (n-m&D/p (2.61 

Thus, in satisfying the boundary condition for the pressure, we must renounce the con- 

dition p = 0, i.e. the smooth matching of the solutions inside and outside the boundary 
layer. The case n = 0 considered in t2] is an exception. Here (2.5). (2.4) and (2.6) 

yield ‘p” = QDs (2 - 2Q, m = ‘/a, C = ,.- Q,oD (2.7) 
which coincides with the results of the latter paper. 

Integrating (2.7) under conditions (2.5) and p = 0, we obtain 

cp’ = SC (1 - Ef, IJI = E” (3 - 2E), D = 2,381 (2.8) 

This solution is characterized by the fact that 

cp’ (0) = 0 (2.9) 

and by the presence of an inflection point of the function ,‘p (E) in the middle of the 

layer. 
From (I. 1) and (2.9) we infer that the shearing stress at the wall is exactly equal to 

the yield strength of the material. As is noted in p], this result means that the theory 

under consideration is valid only for very small velocities of the viscoplastic medium. 

Now let us consider the case of an arbitrary n,(not equal to unity). We can solve the 
problem by the method proposed by Shvets [4] for an ordinary viscous boundary layer. 

Taking rp = E as our zeroth approximation, we integrate twice 
mate solution of Eq. (2.2) , 

n-1 
cp”= y 

o2 3dJ f 80 (1+ 2n) 4 
1 + 4aZE2 

o’= $jnZ _!LZLL [$$ arc tg 2ac + (1 + 2n) In (1 + *f~~<~)] -+ c( 

to obtain our approxi- 

(a2 = n2zY) (2.10) 

(a = cp’ (0)) (2.11) 
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From the second condition of (-2.5) with allowance for (2.6) we obtain 

-l/4(:! f n)ln(f +4az)] @--s/u2 In(1 +4aZ)=0 

and from Eq, (2.11) we have 
n-l J n 

CrZZp---- 
YnZ i t 

?a - 7 112 
p 

arc tg Za _t (Z + 2n) In (1 + 4a2)l/i (X(4) 

Adding the fourth condition of (2.5) to (Z.13),(2.14), we obtain the complete system 
of equations for determining e, p and u. 

Numerical solution of this system for several values of the exponent n yields the fol- 
lowing results : 

n=--3 -2 -1 2 3 

a = 0.415 6.449 0.548 0.352 0.332 
p = 1 .426 2.423 1 .379 1.273 1.332 
U=O.611 0.712 0.851 2.238 1.247 

The values of the function (o (E) are given in Table 1; Fig, 1 shows the curves of 
this function. 

Table J. 
-.-_ 

\ & 

- 

\ - 

0.000 0.000 0.000 
0.047 0.050 0.059 
0.108 0.113 0.128 
0.183 0.188 0.209 
0.271 0.276 6.295 
0,371 0.375 0.393 
0.481 0.484 0.499 
0.600 0.602 0.614 
0.727 0.728 0.736 
0.860 0.861 0.865 
1.000 1 .OOO 1.n00 

- 

- 
,I = 3 

0.000 0.000 
0.048 0.043 
0.120 0.109 
0.207 0.191 
0.304 0.286 
0.408 0.390 
0.518 0.501 
0.633 0.619 
0.752 0.741 
0.874 0.869 
I.900 1 .OOO 

Numerical integration of Eq. (2.2) under conditions (8.5) for given values of n indi- 
cates that the error of the results obtained by means of approximate formula (2.18) does 
not exceed 4%. 

The transverse pressure distribution is characterized by the function @ (5). The values 
of this function are given in Table S ; it is plotted in Fig. 2. 

The calculations were carried out for convergent flow (o = - 1) in the case of neg- 
ative values of n. 

The case n = - 2 corresponds to the motion of an ideally plastic material in a coni- 
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cal nozzle (see [S], p. 91). Motion 
in a flat convergent channel can be 
approximated by setting II = - 1. 

If the velocity distribution in the 
exterior stream is not given by a 

power law, then we can use the me- 
thod of Smith [6, ‘73 which consists in 

4 
5 / 

Fig. 1 Fig. 2 

choosing a power-law velocity distribution which approximates the given dis~ibution 

over some interval. 

1 - :I i: -3 11= -2 n=-1 

2.162 2.000 1.801 
1.880 1.745 1.586 
1.659 1.534 1.391 
1.462 1.344 1.210 
1.262 1.160 1.035 
1.071 0.976 0.863 
0.867 0.788 0.893 
0.658 0.597 0.521 
0.443 0.401 0,349 
0.223 0.202 0.175 
0.000 0.000 0.000 

Table 2 

n=2 n=3 

1.066 1.462 
0.965 1.286 
0.923 1.205 
0.849 1.102 
0.754 0.976 
0.846 0.834 
0.528 0.851 
0.403 0.520 
0.273 0.351 
0.138 0.178 

I 0.000 0.000 
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Boundary value problems for a system of equations serving as a mathematical model of 

the turbulent motion of a liquid or gas are investigated. The model in question was 
introduced by Burgers in r2]. Section 1 contains a proof of the existence of at least one 

smooth time-periodic solution of the first boundary value problem for this system. This 
is accomplished with the aid of the Leray-Schauder topological principle c;? J concerning 
the existence of fixed points of completely continuous operators. The existence theorem 

is prefaced by a derivation of the prior estimates of the solution of the problem which 

are necessary for the realization of the topological principle. Section 2 deals with the 
first boundary value problem with initial conditions and with the Cauchy problems for 
the turbulence model equations. 

Let us begin by introducing some symbols. We denote the interval (0,l) by B . Let 

tr, t, E (-- _‘, =) and let tZ > tr. The symbol Qt,, tp = 62 x (&, t,] denotes the rectan- 
gle. If t, - --00 and t, = + X, then the rectangle Qt,, tp becomes a strip which we 

denote by Q. Every rectangle for which $2 - tt = rO, where r0 is a fixed number, will 

be denoted by Q,. From now on we shall assume that t, = 0 and tz = 2’. The closures 

of Qt,, f,7 @ and Q,, will be denoted by Qt,, tp, a and 07,. 
The scalar product iu the space L, of functions in Q, and the norm are given by 

the expressions S,l %l 
@,I, cr>+ =* = 

~~ 
@‘1@‘:! fl% dt, 

05 

i/ @ ijQ td” = f C w dz dt 

>; 

The scalar product and the norm in L, for every t E [O, z,,] will be denoted in simi- 
lar fashion, 

(atl, CD& =3 c (D1OZ dx, 
. 

,,@,,+& 
0 1) 

The Walder norms for the function sit (x, t) defined in Qt,, tl are defined as follows : 


